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SUMMARY

Genome-scale models of metabolism can illumi-
nate the molecular basis of cell phenotypes. Since
some enzymes are only active in specific cell types,
several algorithms use omics data to construct
cell-line- and tissue-specific metabolic models from
genome-scale models. However, these methods
are often not rigorously benchmarked, and it is un-
clear how algorithm and parameter selection (e.g.,
gene expression thresholds, metabolic constraints)
affects model content and predictive accuracy. To
investigate this, we built hundreds of models of
four different cancer cell lines using six algorithms,
four gene expression thresholds, and three sets of
metabolic constraints. Model content varied sub-
stantially across different parameter sets, but the
algorithms generally increased accuracy in gene
essentiality predictions. However, model extraction
method choice had the largest impact on model
accuracy. We further highlight how assumptions
during model development influence model pre-
diction accuracy. These insights will guide further
development of context-specific models, thus
more accurately resolving genotype-phenotype re-
lationships.

INTRODUCTION

Large-scale omics experiments are now standard in many

biological studies, and many methods exist to interpret these

data. One emerging approach uses genome-scale metabolic

models (GEMs) as valuable systems biology platforms for

model-guided data analysis of large omics datasets, since they

provide cellular context to the data (Hyduke et al., 2013). Further-

more, they allow the integration of diverse omics data since they

catalog all metabolic reactions in an organism, and the reactions
directly link metabolites to enzymes. They can further elucidate

how changes in one component affect other pathways and

cell phenotypes since these models connect genes to measur-

able cell phenotypes (e.g., growth, cell energetics, pathway

fluxes, biosynthesis of cell components, byproduct secretion,

etc.) (Lewis et al., 2012). Thus, these systems biology models

can provide a mechanistic link from genotype to phenotype,

leading to novel insights and guiding further experiments. For

example, these models have helped identify antimicrobial and

anti-cancer drug targets (Folger et al., 2011; Frezza et al.,

2011; Ho Sui et al., 2012; Kim et al., 2014; Lewis and Abdel-Ha-

leem, 2013; Shen et al., 2010; Yizhak et al., 2015) and identify

mechanisms underlying other diseases (Lewis et al., 2010; Mar-

dinoglu et al., 2014), among many other applications (Bordbar

et al., 2014).

Recent algorithmic developments have claimed to allow

researchers to build GEMs that more accurately capture the

metabolism of individual tissues or cell types. Specifically,

GEMs include all reactions in an organism, but not all enzymes

are active in a given tissue or cell line (Uhlen et al., 2015). There-

fore, algorithms have been developed to extract cell-line- or

tissue-specific models (sometimes referred to more generally

as context-specific models) that recapitulate the metabolism of

specific cell types (Becker and Palsson, 2008; Wang et al.,

2012; Zur et al., 2010). A context-specific model is a subset of

the GEM, in which inactive reactions are removed. Reaction

removal is determined by the algorithm used, gene expression

levels, presence of proteins or metabolites, experimental data

availability, literature knowledge, and/or predefined metabolic

functions of the cell type that need to be maintained in the ex-

tracted model.

It is assumed that context-specific models better represent

the actual metabolism of a cell or tissue. Initial procedures for

testing context-specific models have been proposed (Pa-

checo et al., 2015), but the assumptions underlying the extrac-

tion methods have not been rigorously tested for mammalian

models. Thus, here we evaluate the performance of several

prominent model extraction algorithms, analyze the impact of

their assumptions, and quantify the influence of key decisions

that must be made when building cell-line- and tissue-specific
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Table 1. The MEMs Tested in This Study

MEM Description Data Type and Usage

Handling Missing

Expression Evidence

(Orphan/Missing Data)

Requires

Metabolic

Objective

FASTCORE

(Vlassis et al., 2014)

Define one set of core reactions that is

guaranteed to be active in the extracted

model and find the minimum number of

reactions possible to support the core.

Any data type can be used

to define the core reaction set.

removed if not necessary

to support core reactions

no

GIMME (Becker and

Palsson, 2008)

Minimize usage of low-expression

reactions while keeping the objective

(e.g., biomass) above a certain value.

Does not favor inclusion of reactions

not related to the objective.

Transcriptomic data are most

straightforward to define

low-expressed reactions and

their respective weights.

does not explicitly favor

removal or inclusion

yes

iMAT (Shlomi et al.,

2008) (Zur et al., 2010)

Find the optimal trade-off between

including high-expression reactions

and removing low-expression reactions.

Any data type can be used to

define high- and low-expression

reactions.

does not explicitly favor

removal or inclusion

no

INIT (Agren et al.,

2012)

Find the optimal trade-off between

including and removing reactions

based on their given weights. If

desired, accumulation of certain

metabolites can be allowed or even

forced.

Any data type can be used to

define the weights. Assignment

of weights based on the data

can be done in multiple ways.

removal or inclusion

determined by user-

defined weights

no

MBA (Jerby et al.,

2010)

Define high-confidence reactions to

ensure activity in the extracted model.

Medium confidence reactions are only

kept when a certain parsimony trade-off

is met. In random order, prune other

reactions and remove them if not

required to support high- or medium-

confidence reactions.

Any data type can be used to

define the high- and medium

confidence reactions.

removed if not necessary

to support high- or medium

confidence reactions

no

mCADRE (Wang et al.,

2012)

Define a set of core reactions and prune

all other reactions based on their

expression, connectivity to core and

confidence score. Remove reactions

not necessary to support the core or

defined functionalities. Core reactions

are only removed if supported by a

certain number of zero-expression

reactions.

Transcriptomic data are most

straightforward to determine

the order of pruning, the core

reactions, and the zero-

expression reactions.

removed if not necessary

to support core reactions

no
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models. We do this through the comparative analysis of hun-

dreds of models, extracted for four cancer cell lines (A375,

HL60, K562, and KBM7). Models were built after constraining

the genome-scale model of human metabolism using three

sets of constraints based on exometabolomics data. Six algo-

rithms (MBA, mCADRE, GIMME, INIT, iMAT, and FastCore)

were used to build extracted models based on four gene

expression thresholds to specify the active genes in each cell

line from RNA sequencing (RNA-seq). We analyzed the con-

tent of the models and tested their ability to predict gene

essentiality, as measured using CRISPR-Cas9-mediated loss-

of-function screens. We further test the ability of algorithms

to discover the metabolic functions of individual cell types,

based solely on omics data. Through this effort we elucidate

a hierarchy of three key decisions (i.e., algorithm used, gene

expression threshold, and input model constraint) that signifi-

cantly affect the accuracy of cell-line- and tissue-specific

models, and also provide guidelines for the future development

of more accurate algorithms.
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RESULTS

Model extraction methods (MEMs) employ diverse algorithms

to extract cell-line- or tissue-specific models from a GEM

(Table 1). The MEMs we have considered can be categorized

into three families: ‘‘GIMME-like’’ (i.e., GIMME), ‘‘iMAT-like’’

(i.e., iMAT and INIT), and ‘‘MBA-like’’ (i.e., MBA, FASTCORE,

and mCADRE), as proposed previously (Robaina Estévez and

Nikoloski, 2014). The GIMME-like family minimizes flux through

reactions associated with low gene expression. The iMAT-like

family finds an optimal trade-off between removing reactions

associated with low gene expression, and keeping reactions

whose genes/enzymes are highly expressed. In the MBA-like

family, the algorithms use sets of core reactions that should be

retained and active, while removing other reactions if possible.

Different MEMs were often explicitly designed to integrate

specific omics data types (e.g., transcriptomics, proteomics,

metabolomics, etc.), but can easily and intuitively be adapted

to use other types, such as RNA-seq and exometabolomics,
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Figure 1. Hundreds of Cancer Cell-Line-Specific Models Were Constructed to Evaluate Different Approaches to Model Extraction

(A) For four cell lines, 528 cell-line-specific models were built from three input models with different metabolite uptake/secretion constraint sets, six different

MEMs, and four expression thresholds.

(B) Most algorithms require users to define which genes are ‘‘expressed,’’ so we defined four thresholds, as shown here for the K562 cell line.
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which we use in this study. See STAR Methods for detailed de-

scriptions of the MEMs tested in this study, parameter selection,

and details on small simplifications to MEMs to ensure consis-

tency of comparisons (e.g., use of a single threshold for iMAT).

Models are Extracted for Four Cancer Cell Lines
When extracting a cell-line-specific model, several decisions

must be made. Three most salient are (1) how to constrain

theuptakeandsecretionfluxes in themodel prior tomodel extrac-

tion, (2) which MEM algorithm to use for extraction, and (3) the

threshold used to call a gene ‘‘expressed.’’ In this study, we

analyzed how these decisions affect the model content, predic-
tive capacity for geneessentiality, andability to capturemetabolic

functionality (Figure 1A) for four different cancer cell lines (i.e.,

A375melanomacells andHL60, KBM7, andK562 leukemia cells).

We built models from Recon 1 (Duarte et al., 2007). Models were

built both with and without the addition of a biomass function,

consisting of 56 metabolites required for growth (Table S1). To

ensure the robustnessof the resultsof this study,we further varied

the setup parameters. For example, qualitatively similar results

were obtained with a recently published update to the human

GEM, Recon 2.2 (Swainston et al., 2016). Moderate variations of

the biomass function composition and non-growth-associated

maintenance factor also resulted in similar results (see STAR
Cell Systems 4, 1–12, March 22, 2017 3
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Figure 2. Decisions in Cell-Line-Specific

Model Extraction Considerably Affect Model

Content

(A) Seventy-two different combinations of algorithms

and reasonable parameter sets led to a large diversity

of cell-line-specific models of different sizes.

(B) The first four principal components (PCs) explain

most of the variance in reaction content of themodels.

(C) The gene expression threshold contributes the

most to the first PC for all cell lines and the model

constraint selection dominates the third PC. TheMEM

contributes significantly to each PC. Error bars indi-

cate SE across the four cell lines.

(D and E) The influence of expression threshold

selection is clear in the first PC for the K562 cell line

(D), while the model scores of the third principal

component for the K562 cell line is clearly influenced

by the constraint type that was used to extract the

models (E).
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Methods and Figures S1 and S2). Finally, some MEMs can pro-

duce multiple models that differ in a small number of reactions

(e.g., iMATandMBA) and these alternatemodels provided similar

results in this study (see STAR Methods and Figures S3 and S4).

To allow the comparison of different constraints, we developed

three different inputmodels for the twodifferent setupsof Recon 1

(i.e., with and without a biomass function). We call the three

input models the ‘‘unconstrained,’’ ‘‘semi-constrained,’’ and

‘‘constrained’’ models (Figure 1A), and these three input models

differed in if andhowexometabolomicdatawereused toconstrain

exchange reactions (metabolite uptake and secretion reactions) in

Recon 1. Specifically, the unconstrained model has all exchange

reactions open, so it can take up or excrete all metabolites

allowed by the reconstruction. For the semi-constrained models,

exchange reactions are qualitatively constrained to a specific

directionality based on if the metabolites were taken up or

secreted in exometabolomic datasets (Jain et al., 2012). The con-

strained models have quantitatively constrained uptake and

secretion rates for the measured metabolites. Quantitative values

were based on changes in metabolite levels in the media of a

panel of cancer cell lines (Jain et al., 2012). In each input model,

biomass was constrained to the experimentally measured growth

rate of the cell lines (see STAR Methods for more detail).

We built cell-line-specific models using RNA-seq data

(B€urckst€ummer et al., 2013; Di Ruscio et al., 2013; Pawlikowski

et al., 2013; Zhang et al., 2015) to specify active genes in each

cell line. Active genes are identified by many algorithms based

on a quantitative threshold of expression. To cover a range of
4 Cell Systems 4, 1–12, March 22, 2017
representative thresholds, four gene expres-

sion thresholds were defined to specify

which genes are ‘‘expressed’’ in the models:

top 10%, mean, top 25%, and top 50% (Fig-

ures 1B and S5).

To test the predictive capacity of the

models against experimental gene essenti-

ality, we used CRISPR-Cas9 loss-of-func-

tion screens for each cell line (Shalem

et al., 2014; Wang et al., 2014, 2015). We

also tested the capacity of each extracted
model to recover a panel of metabolic functionalities defined

based on the biomass function.

In summary, 528models were built from Recon 1 (288 and 240

models with and without the biomass function, respectively)

using three types of constraints, six MEMs (Table 1), and four

expression thresholds for four different cancer cell lines. Thus,

these provided a controlled set of models to assess the influence

of experimental data, algorithm, and related parameter settings

on the content and performance of the extracted model.

Model Content Is Most Affected by Threshold Selection
Decisions regarding gene expression threshold, algorithm

choice, and the exchange constraints affect the content of our

cell-line-specific models. Specifically, the extracted cell-line-

specific models varied considerably in size from <600 reactions

to >1,800 reactions (Figure 2A). To assess the impact of each de-

cision on model content, we conducted a principal component

analysis (PCA) of the reactions in all models for each cell line.

The first principal component explains >40% of the overall vari-

ance in reaction content for each cell line (Figure 2B). In all four

cell lines, the choice of gene expression threshold provides the

most significant contribution to the variation in the first principal

component (p < 1.53 10�13; Figures 2C, 2D, and S6).

MEM selection provides a moderate contribution to the ex-

plained variation in each principal component (Figure 2C). Mean-

while, the type of uptake/secretion constraint only significantly

contributes to the third principal component (p < 1.33 10�6; Fig-

ures 2C, 2E, and S6), which accounts for�10%of the variance in
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model content. These results are consistent across cell lines and

indicate that the content of a cell-line-specific model is most

heavily affected by the choice of gene expression threshold,

followed by the choice of MEM and constraints placed on

metabolite uptake and secretion.

Model Extraction Improves Gene-Essentiality
Prediction
GEMs contain the genetic basis of cell growth and maintenance.

Thus, microbial GEMs have been particularly successful in pre-

dicting gene knockout phenotypes (Covert et al., 2004; Edwards

and Palsson, 2000). Further work demonstrated that some gene

knockdown phenotypes can be predicted for human cell lines

(Folger et al., 2011; Gatto et al., 2015). However, it is unclear

how accurately human cell-line-specific models predict essen-

tial genes, and how sensitive the accuracy is to the different de-

cisions made for model extraction.

To address this, we compared model-predicted gene essenti-

ality with data from genome-wide CRISPR-Cas9 loss-of-func-

tion screens for the four cancer cell lines (Shalem et al., 2014;

Wang et al., 2014, 2015). In these screens, essential genes are

identified by quantifying single guide RNA (sgRNA) abundance

for each knockout before and after growth selection. A large

decrease in sgRNA abundance indicates a strong impairment

of growth. We systematically deleted each gene in each of the

288 models with the biomass function, and then used flux

balance analysis (Schellenberger et al., 2011) to test models

for normal or impaired growth. We then tested if the sgRNA

abundances decreased significantly for the model-predicted

essential genes (one-tailedWilcoxon rank-sum test). The p value

from this test quantifies accuracy, with a lower p value indicating

a better agreement between model prediction and experimental

data (see STAR Methods).

During model extraction, reactions are removed from the input

model, and through the process, genes that are initially non-

essential in the GEM can become essential in the cell-line-spe-

cific model. Different combinations of MEMs, thresholds, and

uptake constraints lead to different sets of predicted essential

genes for the extractedmodel. However, almost all cell-line-spe-

cific models more accurately predict essential genes than the

input GEMs (Figure 3A). Furthermore, the different decisions

in model construction affect the accuracy of gene-essentiality

predictions (Figure S7). First, more stringent gene expression

thresholds lead to more accurate gene-essentiality predictions

(Figure 3B). Second, constrained models are more accurate

than unconstrained models (Figure 3C). Third, the MEMs differ

in accuracy at predicting gene essentiality (Figure 3D). Combina-

tions of different parameters and MEMs can be analyzed to find

models with more accurate gene-essentiality predictions (Fig-

ures 3E, 3F, and S8). Across all cell lines, we found that gene-

essentiality predictions of INIT, MBA, and mCADRE are the

most accurate, especially when using the most stringent

gene expression thresholds (top 10% and mean). However,

iMAT and INIT have a larger spread in p values than MBA and

mCADRE (Figure 3D), since accuracy decreases substantially

for when using the unconstrained (iMAT and INIT) and semi-con-

strained (iMAT) setups for model extraction.

To identify which decision has the greatest impact on the abil-

ity to accurately predict gene essentiality with cell-line-specific
models, we quantified the proportion of the variance in the

accuracy scores explained by each decision (Figure 3G).

Surprisingly, MEM choice had the greatest impact on the accu-

racy, in contrast to gene expression threshold, which had the

largest impact on whether reactions were included in a model

(Figure 2C).

Metabolic Functionalities Are Not Always Maintained
after Model Extraction
Many human tissues have unique metabolic functions they

accomplish. However, it can be difficult to define all tissue-spe-

cific metabolic functions a priori in an unbiased fashion, since

they are often poorly defined for a given tissue. Can extracted

models capture these metabolic functions in an unbiased

fashion when tissue- or cell-line-specific data are used to build

the models? To answer this, we tested the extent to which the

MEMs can recapitulate a panel of essential metabolic functions

for the four cell lines studied here.

Not all metabolic functions are known, but we defined 56

metabolic functions that are essential for cancer cell growth,

based on the biomass function (Figure 4A). This includes the

synthesis of non-secreted metabolites (e.g., ATP, carnitine,

and glutathione). To this end, 240 models were built for the

four cell lines using Recon 1 without a biomass function, along

with the various gene thresholds, uptake constraints and

MEMs in this study (except for GIMME, since it requires the

prior definition of metabolic functions). We then tested if the 56

functions were predicted to be included in each extracted

model without a priori definition of these functionalities, and a

‘‘functionality score’’ was assigned to each model. The score

represents the number of additional functionalities of a cell-

line-specific model exhibited beyond the number for the 99th

quantile of comparable models of the same size generated

from randomized data (see STAR Methods).

Almost all cell-line-specific models achieve more metabolic

functions than expected by random chance (Figure 4B). How-

ever, some important metabolic functions are inactivated in

many individual models (Figure 4A). A PCA of the functionalities

that were present or absent across the cell lines demonstrated

that the gene expression threshold explained, on average,

51% of the variation in the first principal component, while

the MEM choice explained 17% of the variation (Figure 4C).

Constraint selection was the dominant decision in the second

principal component, but only explained 19% of the variation.

To understand why some functionalities are missed more often,

we analyzed two cancer-relevant metabolites (phosphatidylino-

sitol and tryptophan) that are not available inmany of themodels.

Phosphatidylinositol is a substrate of the phosphatidylinositol

3-kinase enzymes, which are over-active in many tumors and

can drive tumor progression (Vivanco and Sawyers, 2002). Phos-

phatidylinositol exists in several different phosphorylated states,

and the transitions between different states form ametabolic cy-

cle (Figure 4E). Some reactions associated with the cycle, such

as PI3P4K, are highly expressed and therefore are present in

the cell-line-specific models. Since the reactions form a cycle,

the steady-state assumption underlying GEMs allows the cycle

to be included, even when the reaction supplying metabolites

into this cycle, phosphatidylinositol synthase (CDIPTr), or up-

stream reactions are removed, as seen for 61% of the models
Cell Systems 4, 1–12, March 22, 2017 5
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Figure 3. Cell-Line-Specific Models Predict Gene Essentiality, but Accuracy Is Most Strongly Influenced by the MEM

(A) We compared the accuracy of the unconstrained, semi-constrained, and constrained GEMs without MEM use (red) and after MEM use (blue). The relative

accuracy is the log10 of the averageWilcoxon p values of theGEMs (PGS), divided by the p value (PM) for each genome-scale (red) or cell-line-specificmodel (blue).

(B) More stringent threshold cutoffs resulted in more accurate gene-essentiality predictions, as shown for the K562 cell line.

(C and D) Constrained models resulted in slightly more accurate gene-essentiality predictions in the K562 cell line (C), and the different MEMs demonstrated

different levels of accuracy in predicting gene essentiality (D).

(E and F) Combinations of different thresholds and algorithms result in more accurate models, as shown using the constrained input model for the K562 (E) and

A375 (F) cell lines.

(G) When all decisions are assessed, the selection of MEM contributes the most to the accuracy of the model-predicted gene essentiality.
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(Figure 4D). This inhibits the net production of phosphatidylinosi-

tol by most cell-line-specific models (Figures 4D and 4E). Thus,

even if a metabolite is present in a cell-line-specific model, the

model may not be able to predict the physiological metabolic

function of producing the metabolite due to ‘‘loops’’ resulting

from the steady-state assumption of COBRA models (Noor

et al., 2012).

Tryptophan consumption is also absent from many models,

despite its critical role in facilitating escape from the immune

response in progressive cancer (Prendergast, 2011). This is
6 Cell Systems 4, 1–12, March 22, 2017
achieved as tryptophan is converted to kynurenine (Lkynr) due

to high activity of indoleamine-2,3-dioxygenase 1 and 2 (IDO1

and IDO2) and tryptophan-2,3-dioxygenase (TDO). The models

fail to predict tryptophan-associated functions because of multi-

ple problems (Figure 4F). First, tryptophan is an essential amino

acid, used for the synthesis of protein and several hormones and

metabolites. Thus, it must be taken up from the medium. How-

ever, the confidence intervals on the exometabolomic data

used in this study were so wide that their range of values include

zero, and so even the constrained models are not forced to take
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Figure 4. Cell Line-Specific Models Automatically Contain Many, but Not All Native Metabolic Functionalities

We tested how likelymetabolic functionalities can be discovered de novo from integrating RNA-seq with themodels. For each cell line, 60models were built using

combinations of thresholds and MEMs. We tested if the models could synthesize 56 metabolites that are necessary for cancer growth, without a priori

requirement of these metabolic functions.

(A) Many known metabolic functions were active in most models.

(B) Almost all models had more metabolic functionalities than 99% of models of equal size, built with permuted data.

(legend continued on next page)
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up tryptophan. Second, since tryptophan uptake can be zero,

the pathways using tryptophan will only be activated if down-

stream reactions are associated with highly expressed genes

that force their inclusion in the cell-line-specific model. Since

many reactions in the tryptophan-consuming pathway show

low gene expression, many MEMs remove the entire pathway.

It is possible that high thresholds fail to include important genes

if they show high catalytic rates or function at low metabolic

rates. Third, some algorithms will eliminate reactions even

when they are associated with highly expressed genes if they

are involved in a pathway with more reactions with low gene

expression (e.g., iMAT, mCADRE, etc.). Fourth, the GPRs for

the tryptophan 2,3-dioxygenase reaction (TROP2) in Recon 1

are missing for two of the three enzymes that catalyze it. These

include the IDO1 and IDO2 isozymes that are highly expressed

in some cancers (Prendergast, 2011). Therefore, the tryptophan

2,3-dioxygenase reaction (TRPO2) is not always assigned to a

gene expression level and the MEMs favor its removal.

As shown here, many combinations of decisions in the extrac-

tion process can producemodels that accurately predict most of

the known metabolic functionalities in the four cell lines. How-

ever, the tryptophan and phosphatidylinositol usage represent

functions that were missed in most models for several reasons

including the selection of a generic threshold for all reactions,

incomplete or non-existent GPRs, imprecise quantification of

exometabolomics, and the steady-state assumptions of the al-

gorithms. Many of these concerns could be addressed in future

algorithm development to allowMEMs to more comprehensively

predict metabolic functionalities de novo for a cell line or tissue.

DISCUSSION

Several methods have been developed to extract context-

specific models from GEMs. Here we investigated the extraction

procedure of cell line- or tissue-specific metabolic models. We

compared and contrasted hundreds of models that were con-

structed using transcriptomics and exometabolomics data

with several different combinations of algorithms (Table 1) and

parameters (Figure 1A). Through this we showed that human

cell-line-specific models more accurately predict the cell geno-

type-phenotype relationship than GEMs. We further quantified

the influence of key decisions on model prediction accuracy

and identified assumptions that limit themetabolic functionalities

of amodel. These analyses lead to important insights to consider

when constructing context-specific models (Table 2). Thus, this

study highlights (1) the importanceof includingdiversedata types

for model construction and validation, (2) the influence of select-
(C) The gene expression threshold contributes the most to the first PC for all cell li

selection dominates the second PC. Error bars indicate SE across the four cell li

(D–F) Some metabolic functions failed to be added to most models, such as the

tidylinositol cannot be obtained from the model if the upstream reactions or metab

can synthesize phosphatidylinositol (purple, 39%ofmodels) or cannot do so (blue

reaction (synthesizes themetabolite) is absent (green, 19%) or when the required u

inositol (gray). (E) Even when these reactions or metabolites are missing, phosph

enzymes in the cycle are expressed. However, with no input into the cycle, pho

metabolic function. (F) Tryptophan is unavailable in most models since (1) the alg

etc.), (2) the GPR of a key reaction was incomplete (TRPO2), and (3) too many rea

for metabolite and reaction abbreviations.
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ing gene expression thresholds, and (3) the need for refinements

to MEMs to construct more accurate context-specific models.

Our analysis showed that the decision of how to constrain

the uptake and secretion fluxes in the model prior to model

extraction has a lesser effect on the accuracy of gene-es-

sentiality prediction than the other decisions. However, the use

of proper constraints influences the capacity of the model to

recover metabolic functionality when they were not defined a

priori. Furthermore, uptake constraint selection significantly

affected the ability to predict growth rates (see STAR Methods).

Therefore, the development of more physiologically accurate

models will be accelerated, when substrate consumption rates

are determined and used. Beyond exometabolomics data,

more diverse data are available to improve model content and

validate model simulations. For example, the use of endometa-

bolomic data (such as normally permitted by INIT) can be of great

interest to capture key metabolite dynamics and allow their in-

clusion in extracted models. Doing so, the extraction process

will gain in predictive power of some important metabolic fea-

tures and help to drive discovery of metabolic functionalities of

specific cell lines and tissues.

More so than constraint selection, the choice of the gene

expression threshold at which a gene is considered ‘‘expressed’’

had the highest impact on model content (Figure 2C) and the

ability to predict metabolic functionalities without predefining

them (Figure 4C). However, the question remains on how to

select the best threshold. A seemingly intuitive approach to avoid

an arbitrary selection would be to select a threshold based on

housekeeping genes, but some important housekeeping genes

have low expression (Eisenberg and Levanon, 2013). Thus, it

remains unclear how to use such genes to define a threshold

(Figure S9). To address the challenge of identifying a reasonable

threshold in our study, we compared model simulations with

genome-wide loss-of-function screens. Our analysis suggests

that stringent thresholds lead tomore accurate gene-essentiality

predictions. However, this improvement in accuracy comes at a

cost, since smaller models with more stringent thresholds have

fewer metabolic functions, if all relevant metabolic functions are

not enforced a priori (Figure S10). Thus, if metabolic functions

are known, more stringent thresholds should be considered.

However, if the aim is to include previously unknown metabolic

functions, lower thresholds could be considered, but external

data should be used to evaluate the validity of predicted model

functions (e.g., using knockout phenotypes, metabolomics, or

fluxomics). Finally, we note that to ensure a consistent compari-

son of methods, we used a single threshold value. However,

iMAT, for example, was originally designed to use two different
nes with a lesser contribution of MEM choice. Meanwhile, the model constraint

nes.

synthesis of phosphatidylinositol and availability of tryptophan. (D) Phospha-

olites are missing. A pie chart demonstrates the fraction of all 240 models that

, 61%). Models fail to predict the phosphatidylinositol functionality if the CDIPTr

pstream substrates for CDIPTr are missing, such as CDP diacylglycerol and/or

atidylinositol is often found in the model in a metabolic cycle since individual

sphatidylinositol cannot leave the cycle at steady state and contribute to the

orithms often remove reactions without known genes (e.g., TRPt, EX_trp-L (e),

ctions in the pathways using the metabolite have low expression. See Table S2



Table 2. Considerations for the Construction of Context-Specific Models

Model Attribute

Decision Most Strongly

Affecting Attribute

(% Variation Explained) Concerns Perspectives

Model content (size,

completeness)

Threshold (65%, PC1)

d Less stringent thresholds typically

lead to decreased power to predict

essential versus non-essential genes.

d Uniform thresholds do not capture

the continuous nature of enzyme

abundance.

d Model content can be limited by

missing GPRs.

d More reliable models can be obtained by

identifying a threshold thatmaximizes the

consistency of model predictions with

validation data (e.g., gene essentiality,

fluxes, etc.).

d Gene- or reaction-specific thresholds

could be defined with the use of gene-

specific properties (e.g., enzyme

kinetics, expression across many

conditions, expression of neighboring

genes in the same pathways).

d Known metabolic functionalities can

be imposed to force the inclusion of

pathways with incomplete GPRs or

enzymes with low expression.

Metabolic

functionality

Threshold (51%, PC1)

d Stringent thresholds will lead to the

elimination of functionalities unless

they are pre-specified.

d Algorithms can eliminate highly

expressed reactions if neighboring

genes have low expression.

d Inadequate constraints can lead to

an inability to predict and recapitulate

metabolic functions.

d Some MEMs inherently lead to smaller

models with fewer functionalities.

d Additional data should be used

to define as many functions a

priori (e.g., genetic screens,

exometabolomics, cell composition

analysis, endometabolomics data, etc.).

d If metabolic functions are unknown,

low thresholds can be allowed, but

metabolic functions must be verified

using different data types (e.g.,

fluxomics, metabolomics, gene knock

down/knock out).

d Well-defined metabolite uptake and

secretion rates can be imposed to

avoid metabolic function elimination.

Gene

essentiality

MEM (40%)

d Some essential metabolic functions are

needed at low amounts and so enzymes

show low expression. Thus, MEM

reaction removal criteria may cause

false-positive essential genes.

d To meet an essential function, many

MEMs randomly remove reactions when

multiple pathways with a low expression

reaction exist, thus leading to other

reactions becoming essential.

d Most model-predicted essential genes

are binary growth/no-growth calls and

miss more subtle changes in growth rate.

d Defining a core set of reactions that

are known to be active, plus metabolic

functions that must be tested, ensures

that essential processes are covered by

the model and improve essentiality calls.

d Development of methods that use

gene-specific thresholds or enzyme

kinetics may identify actual pathways

that should be removed, thereby

ensuring that essential genes remain

in the model.
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thresholds to differentiate high, medium, and low expression.

Thus, more advanced users can use the workflow we presented

here to test the impact of these additional parameters.

While we show that threshold selection can be optimized with

the use of additional data, the wide range of expression levels

of housekeeping genes suggests future algorithms need to

look beyond the use of a global expression threshold to define

tissue-specific genes. A global threshold ignores the diverse

ranges of activity for different enzymes, stemming from their

different catalytic efficiencies and differences in required expres-

sion levels. We anticipate that more accurate models of tissue-
specific metabolism will be obtained with novel approaches

that use gene-specific expression thresholds, information on

enzyme kinetic parameters, and/or information on the required

magnitude of fluxes for biological functions. Recent studies are

starting to approach this goal by including more gene-specific

constraints (Yizhak et al., 2014; Robaina Estévez and Nikoloski,

2015), although much work remains in this space.

We demonstrated here that the context-specific models can

accurately predict gene-essentiality, as has been successfully

done in E. coli (Edwards and Palsson, 2000), yeast (Heavner

et al., 2013), and other microbes. Interestingly, the choice of a
Cell Systems 4, 1–12, March 22, 2017 9
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MEM itself has the greatest impact on the accuracy of the gene-

essentiality predictions. Thus, great care must be taken when

selecting which algorithm to use. Careful thought must be taken

to consider the assumptions and requirements of an algorithm.

For gene-essentiality and functionality predictions, we found

that starting with a set of core reactions and known functional-

ities considerably improves model accuracy. We also observed

that some models are not able to capture all metabolic func-

tions (e.g., tryptophan and phosphatidylinositol usage) due

to limitations of current algorithms used for extraction (e.g., re-

quirements to remove pathways if neighboring reactions have

unknown or inaccurate GPRs). However, it is expected that

improvements to algorithmic assumptions will lead to better pre-

dictions, such asmetabolic anti-cancer targets or the unique and

previously unreported metabolic functions of individual tissues

or cell lines.

Finally, all of these efforts require improved characterization of

metabolism. Gaps in our knowledge of human metabolism must

be filled through integrated computational and experimental

efforts (Rolfsson et al., 2011). This will include genetic screens,

such as genome-wide CRISPR-Cas9 screens, algorithms that

enable rapid discovery of gap filling strategies, and biochem-

ical characterization of enzymes. Finally, there is a need for the

detailed definition of the metabolic functions of tissues and indi-

vidual cell types. When a cell is known to have certain function-

alities, it helps to enforce their inclusion during model extraction

(such as done in INIT [Agren et al., 2014] and mCADRE).

Together, these efforts will improve tissue-specific metabolic

modeling.

Conclusion
Context-specific models depend substantially on key decisions

on methodology and data processing, and these decisions

significantly influence their size, functionality, and accuracy.

While there is no strong evidence that oneMEM universally gives

the most physiologically accurate models, each method has

different underlying assumptions that affect the resulting model.

Therefore, selection of the MEM and the associated parameters

should be done while considering the goals of the study and the

available data. This comparative analysis of extraction methods

and relevant parameters highlights that the use of omic data can

aid in the construction of tissue-specific models. These models

can improve the predictive capacity of genotype-phenotype re-

lationships (evaluated through known metabolic functions and

gene essentiality in the context of this study). However, care

must be taken to build the most accurate models. Furthermore,

advances in algorithmic development, inclusion of additional

data, and refinement of the human genome-scale metabolic

network reconstruction will be needed to further improve the ac-

curacy of such models. Such efforts will continue to increase in

value for systems biology analyses and biomedical applications.
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Trimmomatic Bolger et al., 2014 www.usadellab.org

STAR Dobin et al., 2013 code.google.com/archive/p/rna-star

Cufflinks Trapnell et al., 2011 cufflinks.cbcb.umd.edu

bioDBnet 2.0 Mudunuri et al., 2009 biodbnet-abcc.ncifcrf.gov

fastCC Vlassis et al., 2014 PMID: 24453953

COBRA Toolbox 2.0 Schellenberger et al., 2011 PMID: 21886097

Other

Recon1 model Duarte et al., 2007 bigg.ucsd.edu

Recon 2.2 model Swainston et al., 2016 PMID: 27358602

BiGG Database King et al., 2016 bigg.ucsd.edu
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author, Dr. N.E. Lewis

(nlewisres@ucsd.edu).

METHOD DETAILS

Implementation of the MEMs
FASTCORE

The implementation of FASTCORE (Vlassis et al., 2014) is freely available at http://bio.uni.lu/systems_biology/software/. The only

alterations made for this study were the use of Gurobi instead of CPLEX as a solver and the change of an internal scaling constant

to 13 103, when it was originally 13 105. This was necessary to allow the algorithm to adequately determine whether a reaction was

active when small-valued constraints are present. The gene expression thresholds were used to determine the core reactions set.

Reactions without expression data were never considered core reactions. The biomass reaction and ATP demand reaction were

always added to the set of core reactions except when models were extracted for evaluation of the metabolic functionalities.

GIMME

The implementation of GIMME is a slightly modified version of the implementation from the COBRA toolbox. In this study, the gene

expression data were not discretized but the expression levels were used directly as weights in the objective function, as done in the

original publication of GIMME (Becker and Palsson, 2008). The gene expression thresholdwas subtracted from the expression for the

reactions, thus determining whether it would be assigned a positive or negative weight in the objective. Reactions without expression

data were given a weight of zero. The minimal fraction of the biomass objective value was set to 90%.

iMAT

In the original version of iMAT (Shlomi et al., 2008), three sets of reactions were defined (‘‘high expression’’, ‘‘low expression’’ and

‘‘moderately expressed/no data’’). To maintain consistency and simplify comparison with the other extraction methods, we merged

low and high expressed sets into a single group. All reactions without expression data were put in the ‘‘moderately expressed/no

data’’ reaction set. The biomass reaction and ATP demand reaction were always added to the ‘‘high expression’’ reaction set, except

whenmodels were extracted for evaluation of the metabolic functionalities. When the unconstrained or semi-constrained model was
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used as input, the flux activation threshold (ε) was set to 1, which was also done in the original publication. When the constrained

model was used as input, a flux activation threshold of 13 10�6 was used. This value was chosen because it is smaller than the small-

est exchange reaction constraint but still larger than the threshold of 13 10�8, used to define consistent reactions. Amaximum solve

time of one hour was used for theMILP for the unconstrained and semi-constrained inputmodels. This was increased to two hours for

the constrained input model. After this time the solution was always near-optimal (<10% variation around the best known objective

value). Equivalent optimal models could be acquired, but when different models from the same parameter set were analyzed, they

provide qualitatively similar results (Figures S3 and S4).

INIT

An implementation of INIT is provided in the RAVEN toolbox (Agren et al., 2013). However, this implementation is meant to work with

models that are structured in a slightly different manner than the COBRAmodels. Moreover, the accumulation of metabolites as used

in the original version of INIT (Agren et al., 2012) was not used here because we did not have endometabolomics data for the cell lines.

Thus, after the simplification, each reaction was given a (non-zero) weight according to Equation 1. Reactions with positive weights

were put in the ‘‘high expression’’ set and reactions with negative weights were put in the ‘‘low expression’’ set. Reactions with

missing expression data were given a weight of -2. The biomass reaction and ATP demand reaction were assigned a weight equal

to the maximum across all reactions, except when models were extracted for evaluation of the metabolic functionalities (see

Methods). These methods of weighting are similar to those used in the original publication of INIT. The objective of the resulting

MILP was amaximization of the sum of weights. Specifically, the weight of a high-expression-reaction was added when it was active

and the absolute value of theweight of a low-expression-reactionwas addedwhen it was inactive. The flux activation thresholdswere

the same as used for iMAT. A maximum solve time of one hour was used for the MILP for the unconstrained and semi-constrained

input models. This was increased to two hours for the constrained input model. After this time the solution was always near-optimal

(<10% variation around the best known objective value).

weight = 5,log

�
Expression level

Threshold

�
(Equation 1)

Assignment of weights for INIT. As logarithms for very small expression levels can approach –inf, a minimum weight equal to the

negative of the maximum weight across the reactions was used.

MBA

Implementation of MBA followed the pseudo-code in the publication (Jerby et al., 2010). The gene expression threshold was used to

determine the high-confidence reaction set. The medium confidence reactions set was always left empty such that only one expres-

sion threshold was used to maintain consistency with other methods. The biomass reaction and ATP demand reaction were always

added to the high-confidence reactions set, except whenmodels were extracted for evaluation of themetabolic functionalities. Since

MBA prunes reactions in a random order, output models may differ even when the input was identical. Thus, while multiple models

were built, the analyses in the paper used only 1 randomly chosen one for each set of parameters, unless specified otherwise. How-

ever, results were qualitatively similar for different models constructed with the same parameter set (Figures S3 and S4).

mCADRE

The implementation of mCADRE is freely available at https://github.com/jaeddy/mcadre. Originally, mCADRE used microarray data

as input to determine which reactions should be in the core. Here, we used RNA-Seq. The gene expression threshold of the RNA-Seq

data was used to determine the set of core reactions. The biomass reaction and ATP demand reaction was always added to the set of

core reactions, except whenmodels were extracted for evaluation of themetabolic functionalities (seeMethods). Reactions with zero

expression were given a negative expression value and reactions with no GPRs or no measured expression data will be given an

expression of zero. Then, all reactions that were not in the corewere orderedwith respect to their expression, their connectivity score,

and their confidence score, respectively. The ratio of inactivated core reactions to inactivated non-core reactions was set to 1/3, as

done in the original publication (Wang et al., 2012). The metabolic function and salvage pathway checks that were standard in

mCADRE were also used.

Curation of the Exometabolomic Data
Published metabolite uptake and release (exometabolomic) data on the NCI-60 lines (Jain et al., 2012) was re-processed in a semi-

automated process. The original dataset was processed by correcting for drift in the peak area standardization across runs. This was

done by a linear L1 regression of blank media standards. However, upon detailed inspection of the drift for different metabolites, it

was apparent that the drift was highly non-linear for some metabolites. The effect of applying a linear approximation in these non-

linear cases was that metabolite uptakes were significantly misrepresented, and in some cases, metabolites were actually not

exchanged substantially at all, once a non-linear drift correction was applied. Wemanually created non-linear approximations of drift

for each metabolite in Mathematica based on the media standards for each metabolite. We applied these non-linear corrections to

the raw data to recalculate the metabolite uptake and release profiles.

The metabolites from the exometabolomics data used in this study were previously measured in the media using LC-MS/MS. The

absolute concentrations were determined using standards for each metabolite. Metabolites were identified based on having the

same m/z values and LC retention times as standards, as described previously (Jain et al., 2012).
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Determination of the Biomass Reaction
Cell biomass is composed of protein, lipids, DNA, RNA and small molecules, in weight fractions determined by cell composition

studies (Table S1). The average amino acid composition of protein was taken from literature (Altamirano et al., 2001; Bonarius

et al., 1996; Sheikh et al., 2005). Approximate DNA deoxyribonucleotide composition was set based on genomic base frequency,

taking into account the karyotype of the NCI-60 lines (Roschke et al., 2003). RNA ribonucleotide composition was determined based

on measured mass fractions (Altamirano et al., 2001; Bonarius et al., 1996; Sheikh et al., 2005). Lipid composition was set based on

measured lipid composition for high concentration lipids. Small molecule weight fractions were determined for several high concen-

tration non-essential metabolites using literature concentrations and a typical cell dry weight of 0.2 ng/cell and cell volume of 2 pL/cell

when unit conversions were necessary.

We chose to set the macromolecule weight fractions to be constant between cell lines. Previous studies show minimal variance

between macromolecule weight fractions for particular types of cells, such as hybridoma cells and Chinese hamster ovary cells (Al-

tamirano et al., 2001; Bonarius et al., 1996; Sheikh et al., 2005). Other cell types, such as liver cells, may have significantly different

macromolecule weight fractions, but cell lines derived from such tissues are not present in the NCI-60 panel. Also, although cell

composition has also been reported to change across growth conditions (Feijó Delgado et al., 2013), the NCI-60 panel was subject

to uniform growth conditions in the studies generating the data used in this study. Furthermore, there is the question of whether cell

composition changes with cell size. One study showed that doubling of cell size resulted in approximate doubling of respiration, sug-

gesting the protein content scales proportionally to size (Kit et al., 1959). Also, as volume changes, the cell surface area (SA) to volume

(V) ratio changes, and thus it is possible that the lipid weight fraction of the cell changes aswell. However, compartment size has been

shown to be approximately linearly correlated with total volume (De Menezes et al., 1996), and ER membrane alone is reported to be

over 10 times the fraction of the total membrane as the cytoplasmic membrane (Frixione and Porter, 1986), suggesting SA/V differ-

ences mean little in terms of lipid requirements. Thus, we assumed that the macromolecule composition was invariant across cell

lines, although cell sizes differ. Protein content and cell volume data for the NCI-60 was recently published (Dolfi et al., 2013). How-

ever, these data were insufficient to set cell-specific biomass macromolecule weight fractions, since the cell dry weight was not

measured.

To determine the cell-specific dry weights, we integrated cell volume data with the uptake rates as follows. First, the amount of

biomass sustainable by each cell was determined by maximizing the growth for each cell line using FBA, while constrained by

measured metabolite uptake rates in units of ‘‘per cell’’. Then, this sustainable biomass was corrected using measured protein con-

tent data as follows. If the sustainable protein, taking protein as 0.70 of total cell drymass, is less than themeasured protein, a value of

95%of the sustainable protein measurement was used as the estimate of cellular protein. This was done because themeasured pro-

tein could not be sustained by the measured uptake rates, which we assumed was due to error in the measured protein. Measured

protein was assumed to be the greater source of error because the measured uptake rates are highly correlated and there was no

general bias of sustainable protein being greater or less than measured protein. Furthermore, the measured protein showed a rela-

tively low agreement with cell volumes (Pearson R2 = 0.23) and we observed certain spurious data points causing concern. For

example, the SR line was reported to have a protein content of 0.021 ng/cell, which, given the reported cell volume and average pro-

tein density, would result in a dry weight fraction of protein of approximately 0.08, which is substantially lower than measured values

around 0.7. Volumemeasurements were based inmicroscopy, and thus were seen as less error prone than protein content measure-

ments which require cell count estimation, which can be a significant source of error. When sustainable protein was greater than

measured protein, the measured value was used to correct the sustainable protein, using the formula: mestimate = mmeasured +

0.25*(msustainable - mmeasured). This formula was chosen based on resulting agreement with cell volume data. The correlation of esti-

mated protein content with cell volume (Pearson R2 = 0.60) was higher than either measured protein (Pearson R2 = 0.23) or sustain-

able protein (Pearson R2 = 0.52).

Constraining the Input Models
Recon1 (Duarte et al., 2007) was downloaded from the BiGG Database (King et al., 2016). A few reactions were curated in the model,

as described in Table S3. A biomass reaction (Table S1, see Methods) was added with a lower bound equal to the measured growth

rate (Table S4). The non-growth associated ATP maintenance (NGAM) has been previously reported as 1.833 mmol gDW�1 h�1 (Kil-

burn et al., 1969), although results in our study were robust to variations in NGAM (Figure S2).

In the unconstrained inputmodel, carbon-source exchanges are constrained to amaximumuptake of 10mmol gDW�1 h�1 to avoid

internal reaction bounds limiting the uptake of large polymeric carbohydrate molecules, which when catabolized lead to large fluxes

in the model. Carbon-sources include all model metabolites with at least one carbon atom, except for CO2 and HCO3. Other ex-

change reactions use the original flux bounds of the Recon 1model (either 1000 or -1000mmol gDW�1 h�1). As no exometabolomics

data are used to constrain the unconstrained model, it is the same for each of the four cell lines.

The constrained and semi-constrained models use exometabolomics data measured for the NCI-60 cell lines (Jain et al., 2012). To

correct for mass spectrometer drift in the peak area quantification of the data, we used a nonlinear correction since the drift was non-

linear. Exchange reactions were constrained by using themaximum andminimum fluxesmeasured for the biological replicates of the

corresponding cell lines. Bounds were expanded to include zero flux to ensure to not force uptake or secretion. For the constrained

model quantitative values are used. For the semi-constrained model the directionality of the measured exchanges is qualitatively

constrained by values of either �10, 0 or 10, based on the flux direction suggested by the exometabolomics data. Metabolite ex-

changes that were not in the data can only be excreted in the semi-constrained and constrained models, except for metabolites
Cell Systems 4, 1–12.e1–e6, March 22, 2017 e3
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that are not carbon sources, for which default bounds are used. Since the A375 cell line is not in the NCI-60 and no exometabolomics

data are available, exchanges were constrained using data for all other melanoma cell lines in the NCI-60. Specifically, we con-

strained the model using the median of the forward fluxes and the median of the backward fluxes across all melanoma cell lines.

To ensure that the constrained and semi-constrained models can produce biomass, we reconsidered four exchange reactions in

all of the cell types: histidine, methionine, saturated- and unsaturated octadecanoate exchange. These metabolites were not

measured in the exometabolomic data, hence their uptakewas constrained to zero. However, uptake of thesemetabolites is required

for biomass production. For the semi-constrained models the maximum uptake is set to 10 mmol gDW�1 h�1 for these metabolites,

consistent with all other metabolites that can be taken up in the semi-constrained models. For the constrained models the maximum

uptake rates for these metabolites are set to the minimum possible flux, based on a flux variance analysis (FVA) (Mahadevan and

Schilling, 2003) in which biomass is constrained to have at least the flux it would have when uptakes of these metabolites were un-

bounded. The same is done for cysteine, which is not measured in the exometabolomic data but is assumed to be taken up by the

cells (Gout et al., 1997). This resulted in constrained uptake rates comparable to other metabolites is the exometabolomics data.

All blocked reactions that are unable to carry flux above a certain threshold are removed. For the constrainedmodels a threshold of

13 10�8 is chosen. For the unconstrained and semi-constrained models a threshold of 13 10�6 is chosen since metabolite uptakes

were higher for these. A summary of the input models is given in Table S5. To verify that the results in this study were generalizable to

other human metabolic networks, we also tested the main analyses in this study on Recon 2.2 (Swainston et al., 2016), which was

published after this study had been completed. All analyses resulted in similar results based on Recon 1, as shown in Methods.

RNA-Seq Data Processing
ThemRNA-sequencing datasets (B€urckst€ummer et al., 2013; Di Ruscio et al., 2013; Pawlikowski et al., 2013; Zhang et al., 2015) were

downloaded, and Trimmomatic (Bolger et al., 2014) was used to trim low quality reads. The reads were aligned to the GRCh38 refer-

ence human genome using STAR (Dobin et al., 2013) (4 STAR parameters were set: ’–outSAMstrandField intronMotif’, ’–outFilter-

Type BySJout’, ’–outFilterIntronMotifs RemoveNoncanonicalUnannotated’, ’–outSAMtype BAM SortedByCoordinate’, others are

set as default), and then quantified using Cufflinks with all parameters set as defaults (Trapnell et al., 2011), using the unit of fragments

per kilobase of exon per million fragments (FPKM) for all genes. Gene expression threshold cutoffs were determined from the data for

each cell line (Table S6). The gene expression data were mapped to reactions using the GPRs, with OR logic using the maximum of

the expression of all corresponding genes, and AND logic using the minimum of the expression of all the genes. Reactions without a

GPR or where expression data is missing are not assigned a value.

Processing of the Knockout Screen Data
Genome-scale CRISPR-Cas9 knockout screens (Shalem et al., 2014; Wang et al., 2014, 2015) were used to determine gene-essen-

tiality in each cell line to validate the models. For each cell line, the mean log2 sgRNA ratio (before vs. after screen) is calculated for

each gene. The mean ratio is computed from the mean of all sgRNAs mapping to the same gene. For A375, K562 and KBM7, the

ratios were calculated between days 3 and 14 post infection (Shalem et al., 2014; Wang et al., 2015). For HL60, the ratios compared

24 hr after infection and after twelve cell doublings (Wang et al., 2014). Gene identifiers are translated using bioDBnet 2.0 (Mudunuri

et al., 2009). The numbers of genes in the data that could be mapped to genes in the model are shown in Table S7.

Predictions of Gene-Essentiality
To predict gene-essentiality, the FBA algorithm from the COBRA Toolbox (Schellenberger etal., 2011) was used to optimize biomass

production following the removal of each reaction in the cell line-specific models that would be affected by gene removal based on

the GPRs. Using previously published criteria (Yang et al., 2014), a gene is essential when themaximum growth rate after knockout is

less than 1% of the maximum growth rate before knockout. However, our results are qualitatively robust to changes in threshold

choice for essentiality. A 1-tailed Wilcoxon rank sum test was used to test whether the log2 sgRNA ratios were significantly lower

for the genes that the model predicted to be essential. The p-value resulting from this test is used as an accuracy score. The contri-

bution to the variance in p-values due to the different factors (constraint type, MEM and expression threshold) is calculated as fol-

lows. For each factor, themaximumPearson correlation coefficient (R) of the p-values and categories is calculated across all possible

orderings of the categories. The explained variance of each test reported is the R2, scaled to percentage.

Calculating the Functionality Score
Metabolic functionalities are the ability to synthesize individual metabolites of relevance to the cell line. As a proxy for all possible

metabolic functionalities, we defined 56 different functionalities, which are 56 metabolites required for cancer growth. Prior to model

extraction, the biomass reaction was removed and a sink reaction is added for each of the 56 metabolites to ensure they can be syn-

thesized in the inputmodel. All parameter sets were used in this analysis, and all MEMswere tested except for GIMME, whichwas not

included because it includes the optimization of biomass, thus not allowing an unbiased assessment of its ability to perform themeta-

bolic functions.

Following model extraction, all 56 functionalities were tested on each cell line-specific model as follows. First, the flux through the

sink reaction for each functionality wasmaximized using FBA. If the sink can carry flux above the reaction activity threshold, the func-

tionality is considered active. The reaction activity threshold is 13 10�8 for models extracted from a constrained input model and 13

10�6 for models extracted from unconstrained and semi-constrained input models.
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The absolute number of active functionalities varies depending on model size. Therefore, a metric was developed to assess

the efficacy of parameters and MEMs at predicting functionalities while controlling for model size. Specifically, the number of active

functionalities was calculated for each model, compared to 1000 models of the same size, generated by randomly removing reac-

tions from the input model. These randommodels are checked to ensure their stoichiometric consistency by also removing reactions

that have been inactivated by the initial random removal. A quadratic relationship is then fitted between the number of reactions of

each model and the number of functionalities they yield. The 99% confidence interval (non-simultaneous observation bounds) is

calculated for the quadratic fits. Resulting is an upper bound for the 99% confidence interval for each unique input model. The score

of a cell line-specific model is the distance from the 99% confidence interval at the same number of reactions (Figure S11). This is the

number of functionalities the cell line-specific model has beyond the number exhibited by the top 1% of random models of the

same size.

Extraction of Cell Line-specific Models Using the MEMs
Two sets of models were extracted. The first set consisting of 288 models is used in the PCA, growth rate predictions and gene-es-

sentiality analyses. For this set of models the biomass reaction is always given a lower bound equal to the in vitro growth rate of the

corresponding cell before model extraction (Table S4). The second set consisting of 240 models is used for the metabolic function-

ality analysis. For these models, the biomass reaction is not given a constraint and will always be removed during model extraction.

Whenever a consistency check is performed during or after model extraction, fastCC (Vlassis et al., 2014) was used with a reaction

activity threshold of 13 10�8 for the constrained model and 13 10�6 for the unconstrained and semi-constrained models. All MEMs

are implemented inMATLAB and simulations are done using the COBRA Toolbox 2.0 (Schellenberger et al., 2011) inMATLAB 2013b.

Gurobi5 is used as solver.

Results from Recon1 Are Generalizable to Other Human Reconstructions
Recon 1 was used in this study because of its availability, quality, and because its size was more amenable to rapid model construc-

tion and analysis. However, more recent reconstructions, Recon 2 (Thiele et al., 2013) and Recon 2.2 (Swainston et al., 2016), and

other updates (Quek et al., 2014) have been published and providemore extensive views of humanmetabolism. Thus, we tested if the

results in our study with Recon 1 were generalizable to other human reconstructions. To do this we constructed models of the K562

cell line using Recon 2.2. Models were constructed using GIMME, FASTCORE, iMAT, INIT, and mCADRE. First, we found that, as

seen using Recon 1, the gene expression threshold choice had the largest influence on the first principal component (Figure S12A),

while the choice of constraint had its greatest contribution to the fourth principal component. However, when gene essentiality of the

models was compared to data from the CRISPR-Cas9 loss of function screens, the MEM choice had the greatest influence onmodel

accuracy (Figure S7). Furthermore, the pattern of optimal threshold and MEMs for gene essentiality predictions for Recon 2.2 (Fig-

ure S12B) is comparable with the results from Recon 1. Lastly, when models were constructed without the biomass function, the

models were able to recapitulate most metabolic functions, but the few missing metabolic functions (Figure S12C) were comparable

to those missing from models built with Recon 1 (Figure 4). Thus, the results seen with Recon 1 are generalizable to other human

reconstructions.

MILP-Based MEMs Have Multiple Solutions Performing Equivalently
Some MEMs, such as iMAT and MBA, utilize mixed integer linear programming (MILP), and as a result, the MEMs can yield multiple

solutions for a model extraction that would be equally ‘‘fit’’ to the input data. We tested here how different the equivalently optimal

models are from each other, and demonstrated that they exhibit similar levels of accuracy. Specifically, we generated equivalent

optimal models of the A375 cell line constructed using iMAT or MBA (with the p25 threshold) by running the algorithms ten different

times, using different random seeds to start the algorithm. We found that the ability to predict gene essentiality did not drastically

change (Figure S3). Indeed, for example, the results from the analyses in which we predicted gene essentiality for the 10 different

optimal MBA models represent yielded similar results. Furthermore, while the models show some differences in reaction content,

we found them to vary far less in reaction content among the alternative optimal models, compared to models generated with

different MEMs (Figure S4).

Minor Changes to the Biomass Composition Does Not Significantly Influence Gene Essentiality Results
The biomass function was built from previously published studies (Table S1). However, we carefully curated it to qualitatively cover

many of themetabolic needs ofmost, if not all cancer cell lines. Thus, it accounts for the components that are necessary for an immor-

talized cell line to grow. This includes the amino acids, nucleotides, sugars, energy equivalents, and essential small metabolites (poly-

amines, glutathione, q10, paps, carnitine, tetrahydrobiopterin, etc.). The quantitative values should be near the actual values for the

cell lines, but they are estimates based on published sources of cancer cell lines and a few others immortalized mammalian cell lines

(Altamirano et al., 2001; Bonarius et al., 1996; Sheikh et al., 2005). While the values will vary across cell lines, we note that the quan-

titative values in a biomass function only rarely affect gene essentiality predictions (only if substrate uptake rates end up conflicting,

which would not accurately reflect the biology since actual cell lines would merely reduce uptake of any conflicting metabolite).

Indeed, a recent study demonstrated that predictions of growth rates and metabolic flux predictions are largely robust to changes

in the quantitative values of a biomass function (Yuan et al., 2016). To test the validity of this statement in the context of our study, we

used mCADRE to generate 10 additional models for the A375 cell line. For each of these models, all biomass coefficients were
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randomly varied by 20%. We do not see any difference in the accuracy results (i.e., the accuracy scores for gene essentiality pre-

dictions were the same for all 10 models, and predicted growth rates varied by <6%). This analysis demonstrates that modest

changes in the biomass coefficients do not significantly impact the construction of models, nor the accuracy of gene essentiality pre-

dictions using these models. We further tested if the results were also robust to changes in the composition to the biomass function.

Specifically, while a thorough characterization wasmade to include even low abundance essential vitamins in the biomass function, it

is possible that the biomass function could bemissing components. In this situation, themodels could erroneously miss some essen-

tial genes. To test if this could potentially impact the claims of our study, we have performed a supplementary analysis in which we

built 10 more models of the A375 cell line using mCADRE after randomly adding a non-biomass metabolite to the biomass function.

After adding thesemetabolites, our results were qualitatively the same (Figure S1), and well within the range seen for the models built

using the standard biomass function used for this study (Figure S7).

Extracted Models Do Not Inherently Predict Growth Rates
Constraint-based modeling is particularly valuable in its ability to successfully simulate cellular functions and phenotypes, based on

an organism’s metabolic network. Thus, to assess the ability for the models to predict phenotypes, we tested their ability to predict

growth rates. Cell line-specific models that are extracted from constrained input models are directly used to predict growth rate. Cell

line-specific models that are extracted from a semi-constrained or unconstrained input model were constrained by the measured

uptake rates for all exchange reactions that remained after model extraction. Prior to model extraction, the experimentally measured

growth rate (see Table S4) was added as a lower bound on the biomass reaction. This constraint is removed since models might not

be able to achieve this growth rate after the exchange reaction constraints were added. The growth rate is then predicted by maxi-

mizing the biomass reaction using FBA. We found that in nearly all cases, the unconstrained and semi-constrained models failed to

recapitulate the experimentally measured growth rate of the cell. Out of all cell line-specificmodels extracted from unconstrained and

semi-constrained input models, only 7% could achieve a biomass production above 50% of the experimentally measured growth

rate. This failure results because when starting with the non-quantitative uptake and secretion rates, the MEMs are not constrained

to keep the pathways required by the exometabolomics data. Thus, important cell pathways are eliminated since the required exper-

imentally measured growth rates can easily bemetwith unrealistic uptake rates of specificmetabolites that can be used to synthesize

many other biomass metabolites. This occurs since many pathways and uptakes are deemed redundant during extraction and are

therefore removed. Then, when measured uptake rates are added, the cell line-specific models are lacking pathways and cannot

produce sufficient biomass. Thus, cell-line specificmodels can only accurately recapitulate growth rates if uptake and secretion rates

from exometabolomic data are set prior to model extraction (i.e., in the constrained input model) and the biomass reaction itself is

given a lower bound as well.

QUANTIFICATION AND STATISTICAL ANALYSIS

Principal Component Analysis
A binary matrix is constructed in which each row represents one of the 72 extractedmodels and each column represents a variable: a

reaction being present (1) or absent (0) in a model for the model content PCA. Reactions in all or no models were removed from the

matrix. Similarly for the metabolic functionality PCA, the matrix had each row as an extracted model and each column a variable: a

functionality being present (1) or absent (0) in themodel. For the PCAs, the matrix was centered to have zero mean within each row. A

PCA analysis on this matrix was conducted. The variance explained by the different factors (constraint type, MEM and expression

threshold) within each of the principal components is calculated as follows. Within one factor, the maximum Pearson correlation co-

efficient (R) of the component scores and categories is calculated across all possible orderings of the categories. Reported is the R2

scaled to percentages.

DATA AND SOFTWARE AVAILABILITY

The mRNA-sequencing datasets were acquired from previous publications (B€urckst€ummer et al., 2013; Di Ruscio et al., 2013; Paw-

likowski et al., 2013; Zhang et al., 2015) and genome-scale CRISPR-Cas9 knockout screens were obtained from (Shalem et al., 2014;

Wang et al., 2014, 2015). Matlab code for running extraction methods and performing analysis are provided in Data S1 (see also

https://github.com/LewisLabUCSD/Context_Specific_Models_from_GeMS).
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